PLX102637

GSE50983: MAEL-dependent selective processing of pachytene piRNA precursors and translation of spermiogenic mRNAs

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Piwi-interacting small RNAs (piRNAs) of fetal prospermatogonia of mice have been strongly implicated in transposon control. In contrast, little is known about biogenesis and function of abundant piRNAs from adult testes expressed in late spermatocytes and round spermatids. These so-called "pachytene" piRNAs are processed from long non-coding piRNA precursors and have no defined RNA targets in the transcriptome even though their binding partner Piwi, MIWI, is essential for spermiogenesis and fertility. Here we report that 129SvJae mice lacking Maelstrom (MAEL), a conserved piRNA pathway protein, exhibit spermiogenic arrest with defects in acrosome and flagellum formation. Further analysis revealed MAEL association with RNPs containing MIWI, TDRD6, and processed intermediates of pachytene piRNA precursors of various length. Loss of MAEL causes a 10-fold drop in pachytene piRNA levels but an increase in piRNAs from abundantly expressed mRNAs. These results suggest a MAEL-dependent mechanism for the selective processing of pachytene piRNA precursor into piRNAs. Strikingly, ribosome profiling of Mael-null testes revealed that reduced piRNA production is accompanied by reduced translation of over 800 spermiogenic mRNAs including those encoding acrosome and flagellum proteins. In light of recent reports of piRNA-independent protection of translationally repressed mRNPs by MIWI and piRNA-dependent turnover of MIWI, we propose that pachytene piRNAs function by controlling the availably of MIWI for the translational repression of spermiogenic mRNAs. SOURCE: Nicholas,T,Ingolia (nick@ingolia.org) - Ingolia Carnegie Institution

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team