PLX148032

GSE52016: EZH2 controls mammary differentiation independently of its methyltransferase activity through controlling genomic STAT5 access

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mammary development is characterized by the proliferation and progressive differentiation of alveolar epithelium during pregnancy, culminating in lactation. These processes are largely controlled by hormones through transcription factors. We now explore the contributions of histone methyltransferases, which establish H3K27me3 marks, in the temporally-regulated differentiation of mammary epithelium. Loss of EZH2, but not EZH1, resulted in precocious mammary differentiation, which was facilitated by STAT5 binding to specific target genes and their activation. Mammary stem cells were not compromised in the absence of EZH2. Genome-wide H3K27me3 patterns remained intact in the absence of EZH2. Mammary-specific loci were devoid of H3K27me3 marks in mammary progenitor and mature cells, suggesting no regulatory role for this repressive mark. Lastly, the combined absence of EZH1 and EZH2 inhibited the formation of alveoli. Taken together, EZH2 controls temporally-restricted differentiation of mammary epithelium through H3K27me3-independent mechanisms. SOURCE: Keunsoo Kang (kangk2@niddk.nih.gov) - LGP NIH

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team