Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreMacrophage dysfunction and polarization plays key role in chronic inflammation associated with diabetes and its complications. However, the effect of diabetes on macrophage transcriptome including long non-coding RNAs is not known. Here, we analyzed global changes in transcriptome of bone marrow macrophages isolated from type 2 diabetic db/db mice and control littermates db/+ mice using high throughput RNA-seq technique. Data analysis showed that expression of genes relevant to fibrosis, cell adhesion and inflammation were altered in diabetic db/db mice relative to control db/+ mice. Furthermore, expression of several known and novel long non coding RNAs and nearby genes was altered in db/db mice. Gene ontology and IPA showed activation of signaling netwroks relevant to fibrosis, cell adhesion and inflammatory pathways . This study for the first time demonstrated that diabetes profoundly affects macrophage transcriptome including expression of long non coding RNAs and altered the levels of genes relevant to diabetes complications. SOURCE: Nancy Chen (zhuchen@coh.org) - City of Hope
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team