PLX057372

GSE57419: Genome-wide analysis of next generation sequencing for Lsh+/+ and Lsh-/- mouse embryonic fibroblasts

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

To examine the relationship of reduced CG methylation and gene expression in Lsh KO MEFs, we computed mean CG methylation levels at promoter regions of protein-coding genes. About 60% of TSS regions of protein-coding genes display a difference of CG methylation values greater than 0.3 (WT CG methylation minus KO CG methylation) indicating that Lsh deletion has widespread effects at promoter regions. RNA-seq analysis detects similar transcript steady state levels in WT and KO samples. To determine the relationship of Pol II binding and CG methylation reduction in KO MEFs, Pol II Chip-seq was performed. Protein coding genes were ranked according their CG methylation differences between WT MEFs and KO MEFs. The greatest loss of CG methylation is found at promoter with low CG density. Pol II association is inversely related to the number of CpG sites within promoter regions. KO MEFs show less Pol II association at CG rich promoter regions. However, RNA-seq reads are indistinguishable comparing WT and KO samples, suggesting similar transcriptional efficiency in the absence of Lsh. To explore other molecular mechanisms that may preserve low transcription activity or repression at CG hypomethylated promoter regions, we examined H3K27me3 and H3K4me3 modifications by ChIP-seq. Genome wide computation of histone modifications at 5kb tiles shows no increase of H3K27me3 level in KO MEFs. When we ranked 5kb tiles based on CG methylation differences between WT and KO, we observed alterations in H3K27me3 distribution, while H3K4me3 modifications are unremarkable. Regions with moderate CG methylation reduction exhibit concomitant decreases in H3K27me3. SOURCE: Kathrin Muegge (Kathrin.Muegge@nih.gov) - Epigenetics section National Cancer Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team