PLX113238

GSE60530: Profile of gene expression in U87-MG xenografts expressing control vector (V0), the ubiquitin ligase KPC1 or the p50 subunit of the NF-kB transcription factor, using RNASeq analysis of transcripts mapped independently to the human and murine genomes

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: We identified KPC1 as the ubiquitin ligase that binds to the p105 precursor of NF-kB, ubiquitinates it and mediates its proteasomal processing to generate the p50 active subunit of the transcription factor. Using U87-MG human glioblastoma xenografts, we observed that overexpression of KPC1 results in strong inhibition of tumor growth mediated via excessive generation of p50.The goal of this RNASeq study was to analyze the profile of gene expression in xenografts overexpressing control (V0), KPC1 or p50 vectors, and to further understand how the altered gene expression patterns can explain the tumor suppressive effect we observed.; Results:Transcript analysis of U87-MG xenografts overexpressing control (V0), KPC1 or p50 vector mapped to the human genome revealed:; A strong similarity between overexpression of p50 and KPC1 (correlation of 0.51, p-value<10-300 ); A specific signature of NF-kB targets [21 of the consistently changed genes are known to be regulated by NF-kB (p-value<3.410-9 )]; A significant (p-value<1.410-18) increase in the expression of 40 tumor suppressor genes, with no significant change in other classes.; A significant down regulation of a cluster of genes including LIN28B, IL-6, HMAGA2 and VEGFA. This finding links well to an established regulatory axis involving LIN28B, Let-7 microRNA, and IL-6 in inflammation and cell transformation that is regulated by NF-kB.; SOURCE: Aaron Ciechanover (aaroncie@tx.technion.ac.il) - Technion-Israel Institute of Technology

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team