PLX217844

GSE62270: Single-Cell mRNA Sequencing Reveals Rare Intestinal Cell Types

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Understanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating sub-populations of cells are based on mRNA or protein expression of only few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumor cells is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbor stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. Reassuringly, RaceID confirmed the existence of known enteroendocrine lineages, and moreover, discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID by this proof-of-principle experiment we then apply the algorithm to ex vivo isolated LGR5 positive cells and their direct progeny and demonstrate homogeneity of the stem cell pool. We envision broad applicability of our method for discovering rare cell types and the corresponding marker genes in healthy and diseased organs. SOURCE: Dominic Gruen (d.grun@hubrecht.eu) - Hubrecht Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team