PLX138125

GSE63124: Large-scale epigenetic reprogramming is punctuated late during the evolution of pancreatic cancer progression [RNA-Seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

During pancreatic cancer progression, heterogeneous subclonal populations evolve in the primary tumor that possess differing capacities to metastasize and cause patient death. However, the genetics of metastasis reflects that of the primary tumor, and PDAC driver mutations arise early. This raises the possibility than an epigenetic process could be operative late. Using an exceptional resource of paired patient samples, we found that different metastatic subclones from the same patient possessed remarkably divergent malignant properties and global epigenetic programs. Global reprogramming was targeted to thousands of large chromatin domains across the genome that collectively specified malignant divergence. This was maintained by a metabolic shift within the pentose phosphate pathway, independent of KRAS driver mutations. Analysis of paired primary and metastatic tumors from multiple patients uncovered substantial epigenetic heterogeneity in primary tumors, which resolved into a terminally reprogrammed state in metastatic lesions. This supports a model whereby driver mutations accumulate early to initiate pancreatic tumorigenesis, followed by a period of subclonal evolution that generates sufficient intra-tumor heterogeneity for selection of epigenetic programs that may increase fitness during malignant progression and metastatic spread. SOURCE: Xin Li (lixin4306ren@gmail.com) - Johns Hopkins University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team