PLX177771

GSE63738: Next Generation Sequencing Facilitates Comparisons of Control and Schizophrenia-Patient derived hiPSC-derived NPCs

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Cell-based models of many neurological and psychiatric diseases, established by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), have now been reported. While numerous reports have demonstrated that neuronal cells differentiated from hiPSCs are electrophysiologically active mature neurons, the age of these cells relative to cells in the human brain remains unresolved. Comparisons of gene expression profiles of hiPSC-derived neural progenitor cells (NPCs) and neurons to the Allen BrainSpan Atlas indicate that hiPSC neural cells most resemble first trimester neural tissue. Consequently, we posit that hiPSC-derived neural cells may most accurately be used to model the early developmental defects that contribute to disease predisposition rather than the late features of the disease. Though the characteristic symptoms of schizophrenia SZ generally appear late in adolescence, it is now thought to be a neurodevelopmental condition, often predated by a prodromal period that can appear in early childhood. Postmortem studies of SZ brain tissue typically describe defects in mature neurons, such as reduced neuronal size and spine density in the prefrontal cortex and hippocampus, but abnormalities of neuronal organization, particularly in the cortex, have also been reported. We postulated that defects in cortical organization in SZ might result from abnormal migration of neural cells. To test this hypothesis, we directly reprogrammed fibroblasts from SZ patients into hiPSCs and subsequently differentiated these disorder-specific hiPSCs into NPCs. SZ hiPSC differentiated into forebrain NPCs have altered expression of a number of cellular adhesion genes and WNT signaling.; Methods: We compared global transcription of forebrain NPCs from six control and four SZ patients by RNAseq.; Results: Multi-dimensional scaling (MDS) resolved most SZ and control hiPSC NPC samples; 848 genes were significantly differentially expressed (FDR<0.01); Conclusions: The WNT signaling pathway was enriched 2-fold (fisher exact test p-value = 0.031). SOURCE: Kristen Brennand (kristen.brennand@mssm.edu) - Icahn School of Medicine at Mount Sinai

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team