PLX192189

GSE63887: RNA-sequencing of healthy human skeletal myocytes

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Skeletal myocytes are metabolically active and susceptible to insulin resistance, thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network-context to integrate high-throughput data. We generated myocyte-specific RNA-seq data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the down-regulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D. SOURCE: Leif VäremoSystems biology Chalmers University of Technology

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team