Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MorePurpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived brain transcriptome profiling (RNA-seq) in neuropathic region specific Gaucher mouse brain compared with WT and Isofagamine treated mice of the same age and background and secondly to identify the DEmiRNA associated with the DEmRNA before and after treatment This will give us some insights to see if miRNA is also involved in the the regulation of the expression of the genes involved in the disease process before and after treatment.; Methods: 42-45 days old 4L;C*, wild-type (WT) and Isofagamine treated 4L;C* mouse brain were generated by deep sequencing, in triplicate, using IlluminaHiseq. The sequence reads that passed quality filters were analyzed at the gene level with two methods: BurrowsWheeler Aligner (BWA) followed and TopHat followed by DESeq. qRTPCR validation was performed using TaqMan and SYBR Green assays SOURCE: Nupur dasgupta (nupur.dasgupta@cchmc.org) - Gregory Grabowski CCHMC
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team