Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreEntry into and exit from mitosis is driven by precisely-timed changes in protein abundance, and involves transcriptional regulation and protein degradation. However, the role of translational regulation in modulating cellular protein content during mitosis remains poorly understood. Here, using ribosome profiling, we show that translational, rather than transcriptional regulation is the dominant mechanism for modulating protein synthesis at mitotic entry. The vast majority of regulated mRNAs are translationally repressed, which contrasts previous findings of selective mRNA translational activation at mitotic entry. One of the most pronounced translationally repressed genes in mitosis is Emi1, an inhibitor of the anaphase promoting complex (APC), which is degraded during mitosis. We show that Emi1 degradation is insufficient for full APC activation and that simultaneous translational repression is required. These results provide a genome-wide view of protein translation during mitosis and suggest that translational repression may be used to ensure complete protein inactivation SOURCE: Marvin Tanenbaum (marvin.tanenbaum@ucsf.edu) - Ron Vale UCSF
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team