PLX168000

GSE68470: Circadian and light-driven regulation of rod dark adaptation

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The sensation of light is initiated in photoreceptor cells by the photoisomerization of a chromophore molecule from 11-cis to all-trans retinal. Continuous visual perception requires recycling of the spent chromophore back to the 11-cis form through the visual cycle, a series of reactions in the retinal pigmented epithelium (RPE). Light-driven chromophore consumption by photoreceptors is greater in daytime compared to night time, suggesting that correspondingly higher activity of the visual cycle may be required. On the other hand, as rod photoreceptors are saturated in bright light, the continuous turnover of their chromophore through the visual cycle during daytime would unnecessarily utilize precious energy and produce toxic byproducts. Here, we sought to determine whether the recycling of chromophore and the dark adaptation of rods is regulated by the circadian clock and light exposure. We demonstrate that in melatonin-proficient C3H/f+/+ mice, rod dark adaptation is slower during the day or after light exposure. This surprising daytime downregulation of the RPE visual cycle was further demonstrated by gene analysis, which revealed light-driven reduction in the expression of Rpe65, which encodes a key enzyme of the RPE visual cycle. In contrast, rods in melatonin-deficient strains (C57BL6/J and 129/Sv) were not affected by this daily visual cycle modulation. Our results demonstrate that the circadian clock and light exposure regulate the recycling of chromophore in the RPE visual cycle. This daily modulation of rod dark adaptation is mediated by melatonin and could potentially protect the retina from light-induced damage during the day. SOURCE: Joseph,C,Corbo (jcorbo@wustl.edu) - Washington University School of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team