PLX149635

GSE69354: PGC reversion to pluripotency involves erasure of DNA methylation from imprinting control centers followed by locus-specific re-methylation

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Primordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However when removed from their embryonic niche PGCs undergo reversion to generate pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) involves variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. In the current study we show that reverting PGCs to EGCs involves ICC methylation erasure, which remain stably hypomethylated at Snrpn, Igf2r and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes almost complete de novo remethylation. Using the same approach for PGCs differentiated in vitro from ESCs we show that the Snrpn ICC is erased however the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC is abnormally hypermethylated in ESCs, ICC methylation is not erased with differentiation into PGCs. This highlights the importance of not only launching germline differentiation with correctly methylated ESC lines but also the need to better stabilize the hypomethylated state in the in vitro derivatives following ICC erasure. SOURCE: Juehua Yu (juehuayu@gmail.com) - UCLA

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team