Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreChanging the somatic cell transcriptome to a pluripotent state using exogenous reprogramming factors needs transcriptional co-regulators that help activate or suppress gene expression and rewrite the epigenome. Here, we show that reprogramming-specific engagement of the NCoR/SMRT co-repressor complex at key pluripotency loci creates an epigenetic block to reprogramming. HDAC3 executes the repressive function of NCoR/SMRT in reprogramming by inducing histone deacetylation at these loci. Recruitment of NCoR/SMRT-HDAC3 to pluripotency genes is facilitated by all 4 Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) but mostly by c-MYC. Class IIa HDACs further potentiate this recruitment by interacting with both the reprogramming factors and NCoR/SMRT. Consequently, depleting NCoR/SMRT-HDAC3 function enables high efficiency of reprogramming, while elevating NCoR/SMRT-HDAC3 recruitment at pluripotency loci by over-expressing constitutively active class IIa HDACs derails it. Our findings thus uncover an unexpected epigenetic mechanism involving c-MYC, whose manipulation greatly enhances reprogramming efficiency. SOURCE: Andrew,Paul,Hutchins (andrewh@sustc.edu.cn) - Bioinformatics and Genomics South University of Science and Technology of China
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team