PLX068790

GSE71747: The DNA methylation landscape of human melanoma [RNA-Seq]

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Melanoma genomes are often characterized by large numbers of sunlight-induced mutations. However, epigenetic alterations, in the form of aberrant DNA methylation patterns, are also abundant. Using MIRA-seq, we have carried out a comprehensive characterization of the DNA methylome in a series of metastatic melanoma samples and catalogued the methylation changes relative to normal melanocytes, the presumed cells of origin for these tumors. Individual melanoma tumors contained up to several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks that were present in all (27/27) melanomas and may lend themselves as effective disease biomarkers, and 3124 methylation peaks were present in >40% of the tumors. We specifically examined the relationship between presence of the Polycomb mark, H3K27me3 in melanocytes and tumor-specific DNA methylation in melanoma. We found that 150 of the approximately 1,200 tumor-associated methylation peaks near transcription start sites (TSS) were H3K27me3-marked in melanocytes. Notably, DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for H3K27me3-enriched regions with broad genomic coverage. Yet, there were also numerous H3K27me3 peak-associated TSS regions that were completely resistant to DNA methylation in tumors. Furthermore, a rather large group of genes became methylated in melanoma but lacked H3K27me3 in melanocytes. There was no relationship between presence of BRAF V600 mutations and the number of methylation peaks in individual tumors. Gene expression analysis showed a strong signature of upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Genes down-regulated in tumors were enriched for melanocyte differentiation and pigmentation factors. Overall, there was limited correlation between tumor-associated DNA methylation changes and changes in gene expression although distinct melanocyte differentiation genes including KIT, PAX3 and SOX10 became methylated and downregulated in melanoma. SOURCE: Xiwei Wu (xwu@coh.org) - Integrative Genomics Core Beckman Research Institute

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team