PLX237731

GSE74064: Therapeutic targeting of myeloid leukemias with spliceosomal mutations through modulation of splicing catalysis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mutations in spliceosomal genes are commonly found in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations occur at highly restricted amino acid residues and perturb normal splice site and exon recognition. Spliceosomal mutations are always heterozygous and rarely co-occur with one another, suggesting that cells may only tolerate a partial deviation from normal splicing activity. To test this hypothesis, we generated mice with inducible hemizygous expression of the commonly occurring SRSF2P95H mutation in the hematopoietic system. These mice rapidly developed lethal bone marrow failure upon activation of the Srsf2P95H mutation with concomitant deletion of the wildtype Srsf2 allele, demonstrating that Srsf2-mutant cells depend on the wildtype Srsf2 allele for survival. We next tested whether spliceosomal-mutant leukemias display greater sensitivity to pharmacologic splicing inhibition induced by the small molecule E7107. Treatment of isogenic murine leukemias as well as patient-derived xenograft (PDX) AMLs showed significant reductions in leukemic burden specifically in samples carrying spliceosomal mutations. Collectively, these data provide genetic and pharmacologic evidence that leukemias with spliceosomal mutations are preferentially susceptible to additional splicing perturbations in vivo compared with wildtype counterparts. Modulation of spliceosome function may provide a novel therapeutic avenue in genetically defined subsets of MDS/AML patients. SOURCE: Heidi DvingeR. Bradley Fred Hutchinson Cancer Research Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team