PLX253850

GSE74201: Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in a Human Neural Stem Cell Model of Huntingtons Disease

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

We have utilized induced pluripotent stem cells (iPSCs) derived from Huntingtons disease patients (HD iPSCs) as a human model of HD and determined that the disease phenotypes only manifest in the differentiated neural stem cell (NSC) stage, not in iPSCs. To understand the molecular basis for the CAG repeat expansion dependent disease phenotypes in NSCs, we performed transcriptomic analysis of HD iPSCs and HD NSCs compared to isogenic controls using RNA-Seq. Differential gene expression and pathway analysis pointed to TGF-b and netrin-1 as the top dysregulated pathways. Using data driven gene coexpression network analysis, we identified seven distinct coexpression modules, and focused on two that were correlated with changes in gene expression in NSC due to the CAG expansion. Strikingly, our HD NSC model revealed the dysregulation of genes involved in neuronal development and the formation of the dorsal striatum in HD. Further, the striatal specific and neuronal networks disrupted could be modulated to correct HD phenotypes and provide novel therapeutic targets for HD SOURCE: Giovanni Coppola (gcoppola@ucla.edu) - Neurogenetics UCLA

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team