PLX174642

GSE75599: Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

We investigated microRNA expression in motoneurons by performing small RNA sequencing of fluorescence-activated cell sorting (FACS)-isolated motoneurons labelled with the Hb9:gfp transgenic reporter and Hb9:gfp negative non-motoneurons including spinal interneurons. We find that one microRNA, microRNA-218, is highly enriched and abundantly expressed in motoneurons. Furthermore, we find that miR-218 is transcribed from alternative, motoneuron-specific alternative promoters embedded within the Slit2 and Slit3 genes by performing RNA sequencing of FACS-isolated motoneurons and a dissected embryonic floor plate cells which served as a control. Next, we performed RNA sequencing of FACS-isolated wild type (WT) motoneurons and motoneurons lacking miR-218 expression (218DKO motoneurons), and find that a large set of genes (named 'TARGET218' genes) with predicted miR-218 binding sites are de-repressed in the absence of miR-218 expression. Finally, we examine the expression of TARGET218 genes in other neuronal subpopulations by FACS-isolating V1, V2a, and V3 interneurons expressing Cre-inducible fluorescent reporters and performing RNA sequencing. We find that the TARGET218 network of genes is depleted in wild-type motoneurons versus these interneuron types. Additionally, these genes are expressed at similar levels in 218DKO motoneurons compared with interneuron subtypes, suggesting that this genetic network. SOURCE: Neal,D,Amin (namin@salk.edu) - Pfaff Salk Institute for Biological Studies

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team