PLX182093

GSE75639: Comparative transcriptomic and epigenomic analyses reveal new regulators of murine brown adipogenesis [Seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Increasing energy expenditure by promoting the thermogenic program in brown adipocytes is a promising approach to combat human obesity. To fully exploit the potential of this approach a comprehensive understanding of the gene regulatory network that controls both lineage commitment and differentiation of brown cells is necessary. Here, we systematically examine the transcriptomic and epigenomic transitions from mesenchymal stem cells to brown adipocytes (BA) and we perform a comparative analysis with differentiating white adipocytes (WA). We identify coding genes, lncRNA genes, and microRNA genes that are differentially regulated upon BA differentiation. In addition, we generate genome wide reference maps for several chromatin marks throughout brown adipogenesis. We identify putative (super-)enhancers, super-enhancers controlled genes in brown and white adipocytes, as well as target genes of the brown lineage-committing factor BMP7. Finally we show that overexpression and knockdown of four putative novel adipogenic regulators (the kinase Pim1, and the transcription factors Six1, Rreb1, and Sox13), indeed affects BA differentiation, suggesting an important role in brown adipogenesis. SOURCE: Wei Xie (xiewei121@tsinghua.edu.cn) - Tsinghua University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team