PLX125804

GSE77408: Fbxo32 mediated gene expression program underlies EMT and metastasis

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The epithelial-mesenchymal transition (EMT) is a process by which cells lose their cell contacts and gain migratory and invasive properties. EMT is essential for numerous developmental processes including neural tube formation, in wound healing, organ fibrosis and cancer metastasis. Despite progress, the repertoire of factors involved in global transcriptional reprogramming underlying EMT remains unknown. Here we show that FBXO32, a member of the F-box protein family, is essential for phenotypic changes hallmark of EMT. Such dependency results from FBXO32-driven transcriptional reprogramming of critical EMT genes and involved changes in their chromatin state. Furthermore, we found that CTBP1, an established regulator of EMT, requires FBXO32 ubiquitination at Lysine 63 for its nuclear retention and gene regulatory function. FBXO32 is also highly amplified in a large panel of metastatic cancers and its knockdown severely impaired metastatic properties of cancer cells in vitro and in vivo. In addition, FBXO32 is also induced during neurogenesis and is essential for neuronal migration in vivo. Together, these findings uncover FBXO32-dependent gene regulatory circuitry that underlies EMT during development and disease. SOURCE: Abhijeet Pataskar Institute of Molecular Biology

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team