PLX127302

GSE77472: The mammalian LINC complex controls mechanosensing at a genome-wide level: RNA-Seq

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mechanical cues influence the shape, growth, and function of tissues and organs and are necessary for the development of engineered tissues. Yet, how cells sense mechanical cues and transduce them into changes in gene expression is not well understood. It is known that mechanical forces transmitted to the nucleus induce chromatin remodeling, promote DNA repair, contribute to the motion of intranuclear organelles and cause direct dissociation of protein complexes inside nuclei. Yet, the extent to which such signals impact gene expression is not understood. Because mechanical forces from the cytoskeleton to the nucleus interior are transmitted by the LINC (linker of nucleoskeleton-to-cytoskeleton) complex, we disrupted the LINC complex and performed genome wide expression studies using RNA sequencing. LINC disruption altered the expression of hundreds of genes at a genome-wide scale. We asked how LINC disruption affected the mechanosensitivity of individual genes by quantifying fold changes in gene expression on soft and stiff substrates. Remarkably, LINC disruption tended to preserve gene mechanosensitivity, but to reverse its direction. LINC disruption did not cause changes in nuclear shape, nor eliminated nuclear shape sensitivity to substrate rigidity. Our results show for the first time that the LINC complex regulates mechano-sensing at a genome-wide level, and argue for a distinct mechanism that does not require changes in nuclear morphology. SOURCE: Tanmay Lele (tlele@che.ufl.edu) - University of Florida

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team