PLX205782

GSE77784 (mouse): MOF acetyl transferase regulates transcription and respiration in mitochondria

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Histone acetylation is sensitive to metabolic cues, however interplay between histone acetyl transferases and cellular metabolism remains poorly understood. Here we report the localization of a classical nuclear HAT- MOF and members of Non-Specific Lethal complex in mitochondria. MOF regulates expression of oxidative phosphorylation (OXPHOS) genes, residing in both nuclear and mitochondrial genomes, selectively in aerobically respiring cells. Furthermore, MOF/KANSL1 depletion causes impaired mitochondrial translation and reduced respiration. MOF loss is catastrophic for tissues with high-energy consumption. In mouse hearts, Mof knockout causes hypertrophic cardiomyopathy, compromised ventricular contractility/ stroke volume and ultimately leads to cardiac failure within three weeks of birth. RNA-seq analysis of the cardiomyocytes revealed deregulation of mitochondrial nutrient metabolism and OXPHOS pathways. Consistently, electron microscopy on affected tissues revealed mitochondrial deterioration with high tissue heterogeneity, commonly observed in mitochondrial diseases. Thus, we reveal a novel function of MOF in mitochondrial homeostasis and propose MOF as a sensor connecting epigenetic regulation to metabolism. SOURCE: Aindrila Chatterjee (chatterjee@ie-freiburg.mpg.de) - Max Planck Institute of Immunbiology and Epigenetics

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team