PLX079038

GSE79068: Interleukin 4 has Stat6-dependent therapeutic efficacy in acute myeloid leukemia

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Acute myeloid leukemia (AML) is associated with poor prognosis, and there is a strong need to develop new therapeutic strategies to improve treatments. We performed a cytokine screen with 114 recombinant proteins to identify selective negative regulators of primitive murine AML cells relative to normal bone marrow cells. The top candidate identified was interleukin 4 (IL4), as it showed the most selective inhibition of leukemia cell growth. Stimulating leukemia cells ex vivo with IL4 and transplanting the cells into mice resulted in reduced leukemia burden and prolonged survival compared with controls. In contrast, IL4 did not inhibit the function of normal hematopoietic stem and progenitor cells in long-term bone marrow repopulation assays. Moreover, we found that IL4 treatment of leukemia cells induced Stat6 phosphorylation, and that leukemia cells with Stat6 knocked out using CRISPR/Cas9-genetic engineering were partially resistant to IL4 stimulation, revealing Stat6 as a critical mediator of the IL4 effect. To evaluate whether IL4 has in vivo therapeutic efficacy, we expressed IL4 ectopically in leukemia cells in vivo and also injected IL4 into leukemic mice; both strategies resulted in the suppression of the leukemia cell burden and increased survival. Further analysis revealed that IL4 treatment induces apoptosis in the leukemia cells. Importantly, IL4 exposure also inhibited the growth and survival of primary AML patient cells. In summary, these findings demonstrate that IL4 selectively inhibits AML cells in a Stat6-dependent manner, thus revealing IL4 as a candidate therapeutic agent in AML. IL4 (ProSpec, East Brunswick NJ, USA) was resuspended following the provider guidelines and stored in aliquotes at -80 C. Mouse MLL-AF9 leukemia cells were provided by Dr. Benjamin Ebert (Brigham and Womens Hospital, Boston MA, USA). The murine leukemia cells were cultured in SFEM (StemCell Tech) supplemented with 1% penicillin/streptomycin at 37 C with 5% CO2. SOURCE: Pablo Peña-Martínez (pablo.pena@med.lu.se) - Lund University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team