PLX288020

GSE80976: Effect of thermoneutral housing on non-alcoholic fatty liver disease in mice

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Purpose: To identify the impact of thermoneutral housing as opposed to standard housing on gene expression profiles in the mouse peripheral blood mononuclear cells (PBMCs), focusing on proinflammatory immune responses and high-fat diet induced non-alcoholic fatty liver disease pathogenesis.; ; Methods: Expression profiles from PBMCs collected from C57Bl6 mice fed chow or high-fat diet for 8 weeks, following 2 weeks at either standard or thermoneutral housing conditions. Sequencing was performed in duplicate, the Illumina HiSeq 2500. Transcripts that passed quality filters were analyzed at the gene level, using Strand NGS for accurate alignment and quantification.; ; Results: We mapped approximately 20million reads per sample to the mm10 genome using annotations produced by Ensembl, which represented 36186 transcripts. Approximately 14000 genes exhibited reasonable expression in at least one experimental condition. The primary focus was the effect of housing temperature while holding diet consistent (i.e. thermoneutral vs standard, both on high-rat diet), where ~2700 genes exhibited differential regulation.; ; Conclusions: We present the transcriptomic profile of PBMCs from mice fed chow of high-fat diets, following either standard or thermoneutral housing. We obseve an augmented proinflammatory immune response. SOURCE: Rebekah Karns (Rebekah.Karns@cchmc.org) - Cincinnati Children's Hospital Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team