PLX016271

GSE81259: Transcriptional profiling reveals monocyte signature associated with JIA patient poor response to methotrexate

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The mechanisms that determine the efficacy or inefficacy of methotrexate in juvenile idiopathic arthritis (JIA) are ill-defined. The objective of this study was to identify a gene expression transcriptional signature associated with poor response to MTX in patients with JIA. RNA sequencing was used to measure gene expression in peripheral blood mononuclear cells (PBMC) collected from 47 patients with JIA prior to MTX treatment and 14 age-matched controls. Biological differences between all JIA patients and controls were explored by constructing a signature of differentially expressed genes. Unsupervised clustering and pathway analysis was performed. Transcriptional profiles were compared to a reference gene expression database representing sorted cell populations, including B and T lymphocytes, and monocytes. A signature of 99 differentially expressed genes (Bonferroni-corrected p<0.05) capturing the biological differences between all JIA patients and controls was identified. Unsupervised clustering of samples based on this list of 99 genes produced subgroups enriched for MTX response status. Comparing this gene signature to reference signatures from sorted cell populations revealed high concordance between the expression profiles of monocytes and of MTX non-responders. CXCL8 (IL-8) was the most significantly differentially expressed gene transcript comparing all JIA patients to controls (Bonferroni-corrected p=4.12E-10). Variability in clinical response to methotrexate in JIA patients is associated with differences in gene transcripts modulated in monocytes. These gene expression profiles may provide a basis for biomarkers predictive of treatment response. SOURCE: Mario MedvedovicLaboratory for Statistical Genomics and Systems Biology University of Cincinnati

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team