PLX023848

GSE81266: Ileal pouch transcriptomics reveal shared pathogenesis between pouchitis and ulcerative colitis

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

UC pouchitis is a potential model of UC. We prospectively examined the pouch transcriptomes of UC and familial adenomatous polyposis (FAP) IPAA patients to unveil molecular mechanisms of UC pouchitis susceptibility.; Methods: Total RNA was isolated using the AllPrep DNA/RNA Mini Kit (QIAGEN, Cat No. 8020). RNA quality was evaluated using Bioanalyzer (Agilent, Santa Clara, CA). All RNA samples displayed RNA Integrity Number (RIN) >7. RNAseq including cDNA library preparation was processed at the Genomics Core Facility of University of Chicago (https://fgf.uchicago.edu/). Total RNA in the amount of 100-500g per sample was depleted of ribosomal RNA using the Ribo-Zero kit (Epicentre, Madison, WI). The directional (first strand) cDNA libraries were prepared following the guide of TruSeq Stranded Total RNA Sample Preparation kit.; Results: Unlike FAP patients, UC subjects exhibited a large set of differentially expressed genes (DEGs) between pouch and pre-pouch mucosa as early as 4 months after pouch functionalization. Functional pathway analysis of DEGs in UC pouch revealed: (1) Gain of colon-associated gene expressions and loss of ileum associated gene expressions, (2) enhanced state of immune/inflammatory response, and (3) suppressed xenobiotic, lipid, and bile acid metabolic pathways. These changes were corroborated upon reanalysis of a published larger cross-sectional study of UC and FAP patients. Moreover, >70% of DEGs mapped to published IBD and normal colonic microarray datasets displayed directional changes consistent with active UC, but not Crohn's disease.; Conclusions: UC patients exhibit a unique transcriptomic response to ileal pouch creation that can be observed well before disease. The transcriptome alterations provide insights into pouchitis SOURCE: Yong Huang (yongh@uchicago.edu) - University of Chicago

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team