PLX055846

GSE81489: In fetal testis, SOX9 acts on transcription and splicing of its targets genes through binding to genomic regions with conserved signatures [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

In mammals, male fate is under the control of the master transcriptional regulator, SOX9: in its presence, somatic precursor cells of the embryonic gonads differentiate into Sertoli cells, the main organizers of testicular differentiation. Therefore, analyzing target genes of this transcription factor allows understanding mechanisms of cellular commitment at the genomic level. With the use of ChIP-seq in murine and bovine wild-type testes combined with RNAseq from mouse testes lacking SOX9, we identified SOX9 target genes in the mammalian fetal gonad. SOX9 in murine and bovine fetal testes binds to a large set of genes conserved among mammals, including those with well-established roles in testis and ovary development. RNAseq analysis shows that testis and ovary display sex specific RNA splicing and that SOX9 mediates both target gene transcription and differential splicing. Regions bound by SOX9 are predominantly 5 proximal or intra-genic, and display a specific genomic features that we call "Sertoli cell signatures" or SCS. The SCS is conserved among mammals and comprises multiple binding motifs for the Sertoli reprogramming factors SOX9, GATA4 and DMRT1; indeed, independent DMRT1 ChIP-seq confirms the enrichment of the SCS. Bioinformatic analysis of SCSs regions predicts novel regulatory mechanisms prompting functional validation. For example, we detected SCS in target genes of the nuclear factor TRIM28 and we show experimentally that SOX9 and TRIM28 proteins interact in fetal testis. SOURCE: Francis Poulat (francis.poulat@igh.cnrs.fr) - IGH UPR CNRS 1142

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team