PLX072209

GSE81672: Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Examining transcriptional regulation by existing antidepressants in key neural circuits implicated in depression, and understanding the relationship to transcriptional mechanisms of susceptibility and natural resilience, may help in the search for new therapeutics. Further, given the heterogeneity of treatment response in human populations, examining both treatment response and non-response is critical.; Methods: We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine (14 daily injections), and a rapidly acting, experimental, non-monoamine-based antidepressant, ketamine (single injection), in mice subjected to chronic social defeat stress, a validated model of depression, and used RNA-sequencing to analyze transcriptional profiles associated with susceptibility, resilience and antidepressant response and non-response in prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala.; Results: We identified approximately equal numbers of responder and non-responder mice following ketamine or imipramine treatment. Ketamine induced more expression changes in hippocampus than other brain regions; imipramine induced more expression changes in nucleus accumbens and amygdala. Transcriptional profiles in ketamine and imipramine responders were most similar in PFC, where the least transcriptional regulation occurred for each drug. Non-response reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptible associated transcriptional changes as well as induced resilient associated transcription in PFC, with effects varying by drug and brain region studied.; Conclusions: We generated a uniquely large resource of gene expression data in four inter-connected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by both antidepressant drugs and in both reversing susceptibility and inducing resilience associated molecular adaptations. In addition, we found region-specific effects of each drug suggesting both common and unique effects of imipramine versus ketamine. SOURCE: Immanuel Purushothaman (immanuel.purushothaman@mssm.edu) - Icahn School of Medicine at Mount Sinai

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team