PLX115099

GSE83793: Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Histone tails are post-translationally modified at multiple sites, includingLys36 on histone H3 (H3K36). The H3K36 methylation has been shown to associate with the transcription of active euchromatin, alternative splicing, DNA repair and recombination. However, the role of H3K36 methylation during cell differentiation is still obscure.Previous investigations found that a site specific Lys-to-Met mutation on histones can serve as an inhibitor of this site specific methyltransferases to repress global methylation on that lysine of histones. In this study we usedH3K36 Lys-to-Met mutant (H3K36M) as a tool to investigaterole of H3K36 methylation in our cell differentiation system. Expression of H3K36M repressed global H3K36 methylation but increased H3K27me3 as previously reported. On our cell differentiation system, H3K36M suppressed adipogenesis and myogenesis. Our pioneer RNA-seqstudy further showed that H3K36M repressed the expression of master regulator genes. Here, we did ChIP-seq of several histone modifications to further explore the changes on the epigenome by expression of H3K36M. Interestingly, on some important master regulator genes loci, the repressive marker H3K27me3 increased significantly, correlated with the repression on their expression. The H3K36M decreases global H3K36 di- and tri-methylation. To clarify which H3K36 methyltransferase is important for cell differentiation, we knocked down H3K36 di-methyltransferases Nsd1 and Nsd2, H3K36 tri-methyltransferase Setd2 separately. Nsd2 knockdown, but not Nsd1 or Setd2,can phenocopythe adipogenesis defect in H3K36M expressed cells.Comparing in RNA-seq results, Nsd2 knockdown cells showed similar gene expression profile with H3K36M expressed cells in adipogenesis. These suggest that Nsd2-mediated H3K36me2 plays an important role in adipogenesis.To study the role of H3K36 methylation in vivo, we generated an aP2 promoter driven H3K36M expressed transgenic mouse (Tg), to express H3K36M specifically in adipose tissue. The Tg mice showedsignificant dysfunction in both white and brown adipose tissues. Their fat tissues gene expression profile changed significantly. All of these indicate that H3K36 methylation is important for adipose tissue developmentin vivo.Together, our comprehensive studies provide novel insights into dynamics of H3K36 methylation and its important role in transcriptional regulation of cell differentiation and mouse fat tissue development. SOURCE: Kai Ge (kai.ge@nih.gov) - NIH

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team