Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreCutaneous squamous cell carcinoma (cuSCC) comprises 15-20% of all skin cancers, accounting for over 700,000 cases in the U.S. annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). In order to identify potential targets for molecularly targeted chemoprevention, we performed integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar UV-driven Hairless mouse model. We identified the major transcriptional drivers of this sequence showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this UV-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible. SOURCE: Kenneth Tsai (kytsai@mdanderson.org) - Tsai Lab University of Texas MD Anderson Cancer Center
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team