PLX139271

GSE84545: Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration [E16]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

In order to understand if early epigenetic mechanisms instruct the long-term behaviour of neural stem cells (NSCs) and their progeny, we examined the protein Uhrf1 as it is highly expressed in NSCs of the developing brain and rapidly downregulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 resulted in global DNA hypomethylation with a strong activation of the IAP family of endogenous retroviral elements, accompanied by an increase in hydroxy methyl cytosine. Downregulation of Tet enzymes rescued the IAP activation in Uhrf1 cKO cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP upregulation persists into postnatal stages in the conditional Uhrf1 KO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1. The high load of viral proteins and other transcriptional dysregulation ultimately lead to extensive postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, it highlights how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements. SOURCE: Gunnar Schotta (gunnar.schotta@med.uni-muenchen.de) - LMU Munich

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team