PLX284987

GSE84724: TADs emerge as a functionally, but not structurally privileged scale in the hierarchical folding of chromosomes

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Understanding how regulatory sequences interact in the context of chromosomal architecture is a central challenge in biology. Chromosome conformation capture revealed that mammalian chromosomes possess a rich hierarchy of structural layers, from multi-megabase compartments to sub-megabase topologically associating domains (TADs), and further down to sub-TAD loop domains. TADs appear to act as regulatory microenvironments by constraining and segregating regulatory interactions across discrete chromosomal regions. However, it is unclear whether other (or all) folding layers share similar properties, or rather TADs constitute a privileged folding scale with maximal impact on the organization of regulatory interactions. Here we present a novel parameter-free algorithm (CaTCH) that identifies hierarchical trees of chromosomal domains in Hi-C maps, stratified through their reciprocal physical insulation which is a simple and biologically relevant property. By applying CaTCH to published Hi-C datasets, we show that previously reported folding layers appear at different insulation levels. We demonstrate that although no structurally privileged folding level exists, TADs emerge as a functionally privileged scale defined by maximal enrichment of CTCF at boundaries, and maximal cell-type conservation. By measuring transcriptional output in embryonic stem cells and neural precursor cells, we show that TADs also maximize the likelihood that genes in a domain are co-regulated during differentiation. Finally, we observe that regulatory sequences occur at genomic locations corresponding to optimized mutual interactions at the scale of TADs. Our analysis thus suggests that the architectural functionality of TADs arises from the interplay between their ability to partition interactions and the genomic position of regulatory sequences. SOURCE: Yinxiu Zhan (yinxiu.zhan@fmi.ch) - Friedrich Miescher Institute for Biomedical Research

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team