PLX292692

GSE85049: Mll3 suppresses tumorigenesis by activating the Ink4a/Arf locus [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mutations in genes encoding epigenetic regulators are among the most frequent somatic events in human cancers. For example, missense and truncating mutations in the MLL3 (KTM2C) histone H3K4-methyltransferase gene can be found in several tumor types. MLL3 is a member of the mixed lineage leukemia gene family and component of the mammalian COMPASS/like complex that promotes gene expression by establishing chromatin modifications favoring gene activation. While Mll3 loss of function promotes tumorigenesis in mice, the molecular targets and biological processes underlying its anti-neoplastic effects remain unknown. Here we combine powerful genetic, genomic, and animal modeling approaches to demonstrate that Mll3 suppresses hepatocellular carcinoma (HCC) by promoting activation of the Cdkn2a (Ink4a/Arf) locus. Hence, disruption of Mll3 using CRISPR/Cas9-mediated genome editing or by RNA interference using short hairpin RNAs cooperates with the Myc oncogene to drive tumorigenesis, producing tumors with reduced H3K4 methylation at multiple gene regulatory elements and low levels of p16Ink4a and p19Arf expression. These results place MLL3 in an established tumor suppressor network and reveal how disruption of a conserved mechanism of epigenetic regulation can alter CDKN2A action and cancer development. SOURCE: Jeffrey Zhao Memorial Sloan Kettering Cancer Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team