PLX245622

GSE85353 (mouse): DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumour immunotolerance [RNA]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Background: Hypoxia is pervasive in cancer and other diseases. Cells sense and adapt to hypoxia by activating hypoxia-inducible transcription factors (HIFs), but it is still an outstanding question why cell types differ in their transcriptional response to hypoxia.; ; Results: Here, we report that HIFs fail to bind CpG dinucleotides that are methylated in their consensus binding sequence, both in in vitro biochemical binding assays and in vivo studies of differentially methylated isogenic cell lines. Based on in silico structural modelling, we show that 5-methylcytosine indeed causes steric hindrance in the HIF binding pocket. A model wherein cell-type-specific methylation landscapes, as laid-down by the differential expression and binding of other transcription factors under normoxia control cell-type-specific hypoxia responses is observed. We also discover ectopic HIF binding sites in repeat regions which are normally methylated. Genetic and pharmacological DNA demethylation, but also cancer-associated DNA hypomethylation, expose these binding sites, inducing HIF-dependent expression of cryptic transcripts. In line with such cryptic transcripts being more prone to cause double-stranded RNA and viral mimicry, we observe low DNA methylation and high cryptic transcript expression in tumours with high immune checkpoint expression, but not in tumours with low immune checkpoint expression, where they would compromise tumour immunotolerance. In a low-immunogenic tumour model, DNA demethylation upregulates cryptic transcript expression in a HIF-dependent manner, causing immune activation and reducing tumour growth.; ; Conclusions: Our data elucidate the mechanism underlying cell-type specific responses to hypoxia, and suggest DNA methylation and hypoxia to underlie tumour immunotolerance. SOURCE: Jieyi Xiong VIB-KULeuven Center for Cancer Biology

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team