PLX248691

GSE86618: Single Cell RNA-Sequencing Identifies Diverse Roles of Epithelial Cells in Idiopathic Pulmonary Fibrosis

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease causing alveolar remodeling, inflammation, and fibrosis. We utilized single cell RNA-sequencing (scRNA-Seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of epithelial cells from normal human lung defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified three distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and, an additional atypical "transitional" cell that contribute to pathological processes in IPF. Individual IPF cells frequently co-expressed alveolar AT1, AT2, and conducting airway selective markers, demonstrating "indeterminate" states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-, HIPPO/YAP, P53, and AKT-PI3 Kinase. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. Single cell transcriptomic analyses of respiratory epithelial cells identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. Present scRNA-seq transcriptomic analysis of normal and IPF respiratory epithelial cells provides a rich data source to further explore lung health and disease. SOURCE: Jie Tang (jie.tang@cshs.org) - Cedars Sinai Medical Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team