PLX102424

GSE87890: Molecular profiling of dorsal raphe nucleus Vgat and VGLUT3-expressing neurons

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Hunger, driven by negative energy balance, elicits the search for and consumption of food. In mammals, this is orchestrated principally through the activity of neurons in the hypothalamus, direct manipulation of which can potently drive food intake. However, the neural circuits outside of the hypothalamus that control feeding are poorly understood. Here, we identify two functionally opponent cell types within the dorsal raphe nucleus (DRN), marked by the vesicular transporters for GABA (Vgat) or glutamate (VGLUT3), that project to many known feeding centers and rapidly control feeding. We find that DRNVgat neurons drive, while DRNVGLUT3 neurons suppress, food intake. Furthermore, through the development and application of cell type-specific molecular profiling technologies, we identify many differentially expressed transmembrane receptors, which may represent unique druggable targets. Local application of agonists for these receptors potently modulates feeding, recapitulating the effects of cell-specific manipulations. Together, these data establish a key role for the DRN in controlling food intake and add an important anatomic site that controls energy balance. SOURCE: Alexander,R,Nectow (anectow@princeton.edu) - Nectow Lab Princeton University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team