PLX142484

GSE89412: B cell differentiation is limited by de novo DNA methylation [RNA-seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

B cells provide humoral immunity by differentiating into antibody-secreting plasma cells, a process that requires cell division and is linked to DNA hypomethylation and gene regulation. Conversely, accumulation of DNA methylation in B cell differentiation is less apparent. To determine the role of de novo DNA methylation in B cell differentiation, the de novo DNA methyltransferases, Dnmt3a and Dnmt3b, were deleted in B cells resulting in phenotypically normal B cell development in the bone marrow, spleen and lymph nodes. However, upon immunologic challenge, mice deficient for Dnmt3a and Dnmt3b (Dnmt3-deficient) accumulated more antigen-specific B cells and bone marrow chimeras showed this was cell-autonomous. Additionally, a five-fold increase in splenic and bone marrow plasma cells was observed. Molecular analysis revealed that Dnmt3-deficient bone marrow plasma cells failed to repress gene expression to the same level as their Dnmt3ab-sufficient counterparts. This was coupled with a failure of Dnmt3-deficient germinal center B cells and plasma cells to gain and/or maintain DNA methylation at several thousand loci that were clustered in enhancers of genes that function in B cell activation and homing. Analysis of chromatin accessibility showed Dnmt3-deficient plasma cells had increased accessibility at several genes involved in hematopoiesis and B cell differentiation. These data show that de novo DNA methylation limits B cell activation, proliferation and differentiation, and support a model whereby DNA methylation represses the aberrant transcription of genes silenced in B cell differentiation to maintain plasma cell homeostasis. SOURCE: Benjamin,G,Barwick (benjamin.barwick@emory.edu) - Boise and Vertino Labs Emory University

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team