Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreBlood develops in distinct stages. Haematopoietic progenitors in the embryo manifest restricted differentiation potential relative to definitive haematopoietic stem cells in adult bone marrow, which support lifelong multilineage haematopoiesis. To identify regulators of embryonic haematopoiesis, we screened chromatin modifiers and identified the Polycomb group protein EZH1 as a barrier to multilineage potential from pluripotent stem cells (PSCs). EZH1 was directly bound to bivalently poised, yet restricted, HSC and lymphoid genes in primitive progenitors; knockdown enabled robust generation of multilineage progenitors. Moreover, EZH1 haploinsufficiency promoted the generation of HSCs with long-term, multilineage and self-renewal potential from sites of embryonic haematopoiesis in vivo. Together, this work identifies EZH1 as a key epigenetic barrier to definitive haematopoiesis during embryonic development, and highlights the utility of chromatin modifiers as cell engineering targets to enhance blood differentiation from PSCs. SOURCE: Melissa Kinney (melissa.kinney@childrens.harvard.edu) - Boston Children's Hospital
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team