PLX162825

GSE89633: Three Distinct Cell Types Express Extracellular Matrix Proteins In Different Niches During Skeletal Muscle Fibrosis

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Tissue extracellular matrix provides structural support and creates unique niches for resident cells . However, the identities of cells responsible for creating specific ECM niches have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain ECM niches in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I expressing cells in all three cell populations increase proportionally in fibrotic muscle indicating that all cell types participate in the fibrosis process. Furthermore, it is shown that the ECM gene expression profile is not qualitatively altered in fibrotic muscle. This suggests that muscle fibrosis in this model results from an increased number of collagen I expressing cells and not the initiation of a specific fibrotic gene expression program. Finally, in fibrotic muscle, we show that these collagen I expressing cell populations differentially express distinct ECM proteins fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins and skeletal muscle progenitor cells differentially express genes important for the satellite cell niche. SOURCE: Kavitha Mukund (k1mukund@ucsd.edu) - University of California, San Diego

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team