PLX215485

GSE89811: RNA-seq analysis of bone marrow peri-vascular stromal cells

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Fate decisions of haematopoietic stem cells (HSCs) to self-renew or differentiate in response to various demands are finely tuned by specialized microenvironments called niches in the bone marrow. Recent studies suggest that arterioles and sinusoids accompanied with distinct stromal cells marked by nerve/glial antigen 2 (NG2) and leptin receptor (LepR), compose distinct niches regulating quiescence and proliferation of HSCs, respectively. However, it remains unknown how the distinct niche cells differentially regulate the HSC functions. Here we show that effects of cytokines regulating HSC functions are dependent on the producing cell sources. Deletion of chemokine C-X-C motif ligand 12 (CXCL12) in NG2-cre targeted cells, which exclusively overlap with Nestin-GFP (Nes-GFP)+ stromal cells associated with arterioles and sinusoids, resulted in a robust reductions of HSCs in the bone marrow and massive mobilization. Deletion of CXCL12 from arteriolar NG2+ vascular smooth muscle cells caused a significant decrease of HSCs and altered HSC location in the marrow, while CXCL12 depletion from sinusoidal LepR+ cells did not reduce HSC numbers in the bone marrow. By contrast, deletion of stem cell factor (SCF) in LepR+ cells led to significant reductions in HSC numbers whereas SCF deletion in arteriolar NG2+ cells showed no effect on HSC numbers in the marrow. These results uncover the distinct contributions of cytokines derived from perivascular cells in separate vascular niches for HSC maintenance and mobilization. We sought to obtain comprehensive understanding of differences between peri-arteriolar and peri-sinusoidal niche cells by the present RNA-seq analysis. SOURCE: Paul,S,Frenette Albert Einstein College of Medicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team