Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreGlucagon supports glucose homeostasis by stimulating; hepatic gluconeogenesis, in part by promoting the uptake and conversion of amino acids into gluconeogenic precursors. Genetic disruption or pharmacologic inhibition of glucagon signaling results in elevated plasma amino acids and compensatory glucagon hypersecretion involving expansion of pancreatic a cell mass. Recent findings indicate that hyperaminoacidemia triggers pancreatic a cell; proliferation via an mTOR-dependent pathway. We confirm and extend these findings by demonstrating that glucagon pathway blockade selectively increases expression of the sodium-coupled neutral; amino acid transporter Slc38a5 in a subset of highly proliferative a cells and that Slc38a5 controls the pancreatic response to glucagon pathway blockade; most notably, mice deficient in Slc38a5 exhibit markedly decreased a cell hyperplasia to glucagon pathway blockade-induced hyperaminoacidemia. These results show that Slc38a5 is a key component of the feedback circuit between glucagon receptor; signaling in the liver and amino-acid-dependent regulation of pancreatic a cell mass in mice. SOURCE: WEN-HONG LI (wen-hong.li@utsouthwestern.edu) - UT Southwestern Medical Center
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team