PLX256724

GSE90466: CHD7 controls cerebellar development via Reelin

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mutation of the gene encoding the ATP-dependent chromatin remodeler CHD7 causes CHARGE syndrome. The mechanisms underlying the neurodevelopmental deficits associated with the syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems and autistic features, are not known. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we show that deletion of Chd7 from cerebellar granule cell precursors (GCps) in the mouse results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay and motor deficits. Genome-wide expression profiling revealed downregulated Reln gene expression in Chd7-deficient GCps. Recessive RELN mutations is associated with severe cerebellar hypoplasia in humans. We provide molecular and genetic evidence that reduced Reln expression contributes substantially to the GCp proliferative defect and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we show that CHD7 is necessary for the maintenance of an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln and provides the first evidence that a mammalian CHD protein controls brain development by modulating chromatin accessibility in neuronal progenitors in vivo. SOURCE: Albert Basson (albert.basson@kcl.ac.uk) - King's College London

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team