PLX131802

GSE91078: Deletion of Gas2l3 in mice leads to specific defects in cardiomyocyte cytokinesis during development

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Mammalian cardiomyocytes lose the ability to proliferate shortly after birth. This accounts for the limited regeneration capacity of the mammalian heart. A characteristic feature of growth arrested cardiomyocytes is binucleation, but the molecular mechanisms are not well understood. In rodents, binucleation of cardiomyocytes starts after birth and occurs through incomplete cytokinesis. Here we demonstrate an important and unexpected role of GAS2L3, a recently identified actin and tubulin binding protein, for cardiomyocyte cytokinesis during heart development in mice. Mice deficient in GAS2L3 die shortly after birth due to dilated cardiomyopathy. Cardiomyocyte-specific deletion of GAS2L3 confirmed that the phenotype resulted from the loss of GAS2L3 in cardiomyocytes. We show that a deficiency in GAS2L3 leads to a strong reduction in cardiomyocyte numbers due to reduced proliferation. In addition, the loss of Gas2l3 resulted in premature binucleation of cardiomyocytes and in induction of a p53-transcriptional program including the cell cycle inhibitor p21. Collectively, these data identify an important role for GAS2L3 in cardiomyocyte cytokinesis during development. SOURCE: Stefan Gaubatz (stefan.gaubatz@biozentrum.uni-wuerzburg.de) - Gaubatz University of Wuerzburg

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team