PLX307659

GSE93127: Comprehensive characterization of neutrophil genome topology

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Neutrophils are responsible for the first line of defense against invading pathogens. Their nuclei are uniquely structured as multiple lobes that establish a highly constrained nuclear environment. Here we found that neutrophil genomes were depleted of local genomic interactions but enriched for long-range genomic interactions that spanned multiple topologically associating domains. Population-based simulation of spherical and torroid genomes revealed declining radii of gyration for neutrophil chromosomes. We found that neutrophil genomes were highly enriched for heterochromatic genomic interactions across vast genomic distances, a process named super-contraction. Super-contraction involved genomic regions located in the heterochromatic compartment in both progenitors and neutrophils or genomic regions that switched from the euchromatic to the heterochromatic compartment during neutrophil differentiation. Super-contraction was accompanied by the repositioning of centromeres, pericentromeres and Long-Interspersed Nuclear Elements to the neutrophil nuclear lamina. We found that Lamin-B Receptor expression was required to attach centromeric and pericentromeric repeats but not LINE-1 elements to the lamina. Differentiating neutrophils also repositioned rDNA and mini-nucleoli to the lamina: a process that was closely associated with sharply reduced rRNA expression. We propose that large-scale chromatin reorganization involving super-contraction and recruitment of heterochromatin and nucleoli to the nuclear lamina facilitate the folding of the neutrophil genome into a confined geometry imposed by a multi-lobed nuclear architecture. SOURCE: Yina Zhu (yiz106@ucsd.edu) - Murre lab university of california,san diego

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team