PLX263598

GSE93167: Conservation and innovation in the DUX4-family gene network [MMH6 RNA-Seq]

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Facioscapulohumeral dystrophy (FSHD; OMIM #158900, #158901) is caused by mis-expression of the DUX4 transcription factor in skeletal muscle1. Animal models of FSHD are hampered by incomplete knowledge of the conservation of the DUX4 transcriptional program in other species. Despite divergence of their binding motifs, both mouse Dux and human DUX4 activate genes associated with cleavage-stage embryos, including MERV-L and ERVL-MaLR retrotransposons, in mouse and human muscle cells respectively. When expressed in mouse cells, human DUX4 maintained modest activation of cleavage-stage genes driven by conventional promoters, but did not activate MERV-L-promoted genes. These findings indicate that the ancestral DUX4-factor regulated genes characteristic of cleavage-stage embryos driven by conventional promoters, whereas divergence of the DUX4/Dux homeodomains correlates with retrotransposon specificity. These results provide insight into how species balance conservation of a core transcriptional program with innovation at retrotransposon promoters and provide a basis for animal models that recreate the FSHD transcriptome. SOURCE: Stephen Tapscott (stapscott@fredhutch.org) - Tapscott Fred Hutchison Cancer Research Center

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team