Key Features
Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreSomatic cells can be reprogrammed into pluripotent stem cells by the ectopic expression of OCT4, SOX2, KLF4, and c-MYC. Although SOX2, KLF4, and c-MYC (SKM) can be substituted by their respective family members, OCT4 is considered to not be interchangeable with any octamer-binding POU proteins. Through a screening with 102 candidate genes, here we have identified that the POU protein OCT6 (also known as SCIP, TST-1, and POU3F1), in conjunction with SKM, is capable of functionally replacing OCT4 and inducing pluripotency. OCT6-mediated reprogramming works with any human cell type, but not with mouse cells. The reprogramming process involving OCT6 is relatively inefficient and slow. This is mainly due to either inefficient formation of OCT6-SOX2 heterodimers onto canonical SOX-OCT sites or lower transactivation activity of OCT6. We demonstrate that modulating either the DNA-binding propensity or the transactivation activity of OCT6 enhances iPSC generation to the efficiency of OCT4. These results thus provide the first evidence that a POU factor other than OCT4 can induce human pluripotency.; SOURCE: You Wu (359007252@qq.com) - tongji university
View on GEOView in PlutoEnhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.
Learn MoreUse Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.
Read about post-pipeline analysisView quality control data and experiment metadata for this experiment.
Request imports from GEO or TCGA directly within Pluto Bio.
Chat with our Scientific Insights team