PLX221762

GSE94966: Define roles of JMJD1B in mediating histone demethylation and gene expression

  • Organsim mouse
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

The arginine or lysine methylation status of histones dynamically changes during many essential cellular processes, particularly during embryonic and hematopoietic stem cell development. The enzymes demethylate methyllysine residues have been well defined, but the enzymes demethylate the methylarginine residues during different cellular processes are unknown. In current study, we demonstrate that JMJD1B is a lysine demethylase for H3K9me2 and an arginine demethylase for H4R3me2s. To reveal the biological significance of JMJD1B as an arginine demethylase, we isolate hematopoietic stem/progenitor cells (HSPC) from wild-type and JMJD1B knockout (JKO) bone marrow. We then conduct ChIP-seq on H4R3me2s and H3K9me2 histone markers and perform RNA-seq to determine the global gene expression profiles. We have observed global demethylation of H4R3me2s at the gene body but not the intergenic regions in hematopoietic stem/progenitor cells. H4R3me2s demethylation at the gene body region is directly correlated with gene expression in these cells. Furthermore, knockout of JMJD1B causes defects in removing the H4R3me2s epigenetic marker, leading to down-regulation of genes important for blood cells differentiation and development. Altogether, our current study demonstrates that arginine demethylases exist in cellular systems and that JMJD1B demethylates H4R3me2s for proper epigenetic programming during development. SOURCE: Juan Du Beckman Research Institute, City of Hope

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team