PLX251162

GSE95299: Overexpression of NFIB and YBX1 in MCF-7 cells

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Studying transcription factor (TF) interactions and gene regulatory networks in breast cancer, we have recently identified two distinct and opposing clusters of TFs associated with estrogen receptor-positive and -negative breast cancer and breast cancer risk. The relative activity of these two groups of TFs has a dramatic effect on patient outcomes and is likely to influence the phenotypic plasticity observed in breast cancer. We have identified two novel interactors (NFIB and YBX1) of the estrogen receptor (ESR1) using Rapid Immunoprecipitation Mass Spectrometry of Endogenous Proteins (RIME), co-immunoprecipitation and microscopy experiments. Both NFIB and YBX1 are members of the group of risk TFs that oppose the activity of the risk TFs associated with estrogen receptor-positive disease, and we have demonstrated that they both repress the transcriptional activity of ESR1. Here, we examine the effect of NFIB and YBX1 overexpression on the transcriptome of an estrogen receptor-positive breast cancer cell line to see if these risk TFs are able to repress the ESR1 regulon and drive cells towards a less estrogen-dependent phenotype. SOURCE: Kerstin Meyer University of Cambridge

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team