PLX092110

GSE96917: Splicing Modulators Act at the Branch Point Adenosine Binding Pocket Defined by the PHF5A-SF3b Complex

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Developing small-molecule splicing modulators represents a promising therapeutic approach for various diseases. Natural products such as pladienolide, herboxidiene, and spliceostatin have been identified as potent splicing modulators that target SF3B1 in the SF3b subcomplex. Using integrated chemogenomic, structural and biochemical approaches, we show that PHF5A, another core component of the SF3b complex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074, and SF3B1-V1078 confer resistance to these modulators, suggesting a common site of interaction. Whole-transcriptome RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but alters the action of splicing modulators from inducing intron-retention to exon-skipping. Relative intron strength to splicing inhibition correlates with the differential in GC content between adjacent introns and exons, leading to this differential global splicing pattern. We determine the crystal structure of human PHF5A and find that Y36 is located on the surface in a region of high sequence conservation. Structural analysis of the cryo-EM spliceosome Bact complex shows that these mutations cluster in a well-defined pocket surrounding the branch point adenosine suggesting a possible competitive mode of action for these splicing modulators, which interact with the aromatic side-chain of PHF5A-Y36. Collectively, we propose that PHF5A-SF3B1 forms a central node for binding to these small-molecule splicing modulators, offering insights to modulate splicing. SOURCE: Silvia Buonamici H3 Biomedicine

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team