PLX118952

GSE97214: Transcriptome sequencing identify a recurrent CRYL1-IFT88 chimeric transcript in hepatocellular carcinoma

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

We performed transcriptome sequencing for hepatocellular carcinoma (HCC) and adjacent non-tumorous tissues to investigate the molecular basis of HCC. Nine HCC patients were recruited and differentially expressed genes (DEGs) were identified. Candidate fusion transcripts were also identified. Further RT-PCR and Sanger sequencing experiments were performed to validate potential recurrent fusion transcripts in other 54 pairs of tumor and adjacent non-tumor samples. A total of 1943 DEGs were detected, including 690 up-regulated and 1253 down-regulated genes, and enriched in ten pathways, especially cell cycle, DNA replication, p53 and complement and coagulation cascades. Seven candidate fusion genes were detected and CRYL1-IFT88 was successfully validated in the discovery sequencing sample and another 5 tumor samples with the recurrent rate of about 9.52% (6/63). The full length of CRYL1-IFT88 was obtained by 3' and 5' RACE. The function of the fusion transcript is closed to CRYL1 because it contained most of domain of CRYL1. According to the bioinformatics analysis, IFT88, reported as a tumor suppressor, might be seriously depressed in the tumor cell with this fusion because the transcript structure of IFT88 was totally changed. The function depression of IFT88 caused by gene fusion CRYL1-IFT88 might be associated with tumorigenesis or development of HCC. SOURCE: Yi Huang (huangyi20170115@sina.com) - Fujian Provincial Hospital

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team